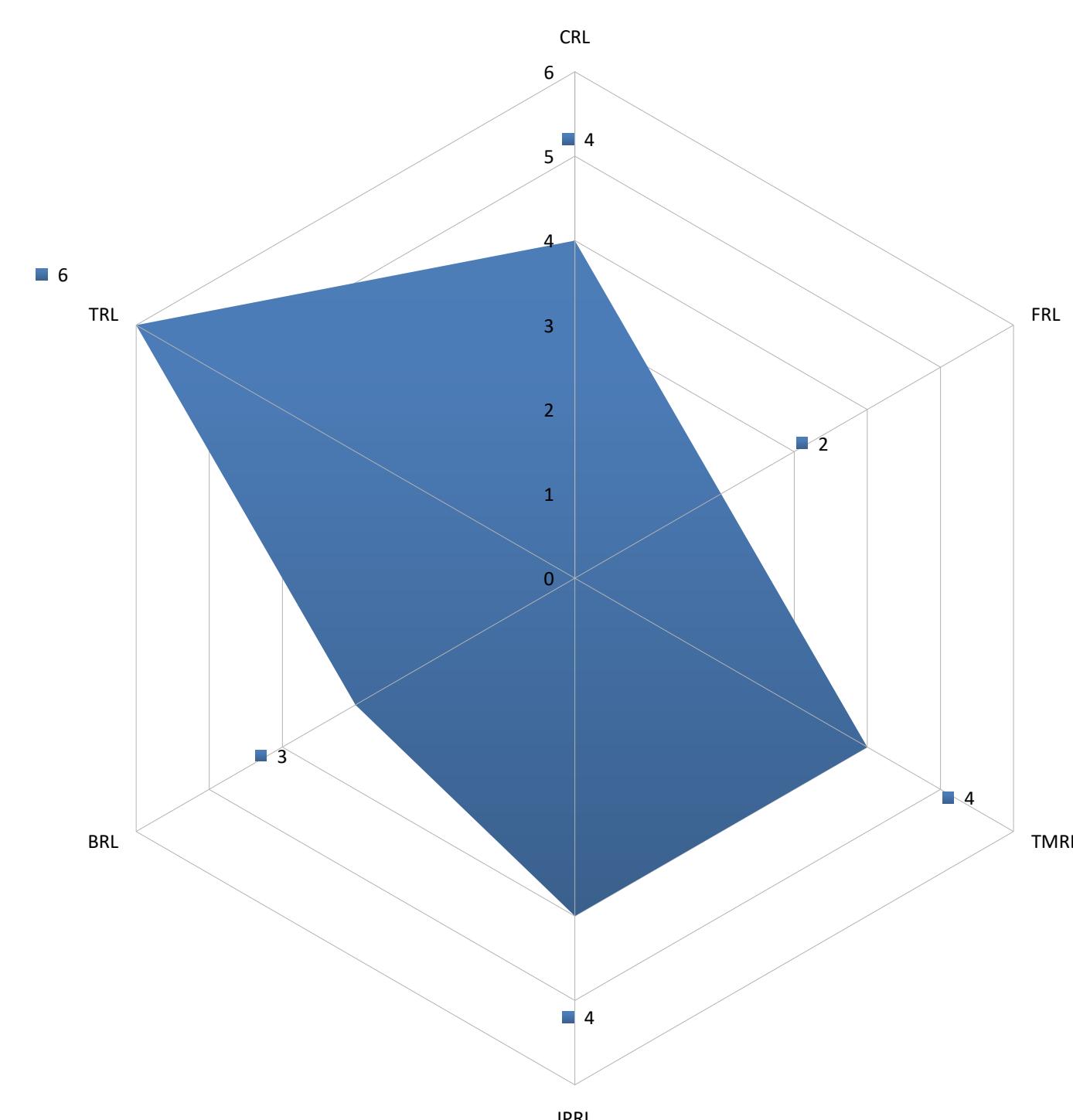


NuClean

Efficient and rapid purification of biological drugs using a broad-spectrum nuclease

Current nucleases function only near 37°C, preventing safe nucleic-acid removal from thermosensitive biologic drugs.


CLEANase is a uniquely engineered nuclease that preserves high catalytic activity at low temperatures, enabling safe nucleic-acid removal from thermosensitive biologics. Its scalable, low-temperature workflow reduces purification steps, shortens manufacturing time, and lowers costs while improving overall product safety and stability.

CRYO-ACTIVE Efficiently attacks and degrades DNA and RNA in lower temperatures (<20°C), ideal for sensitive substances.		CLEANase non-specific nuclease	VERSATILE Ideal for a variety of applications including: <ul style="list-style-type: none">purification of proteins and other biologicals,reduction of viscosity caused by nucleic acids,sample preparation in electrophoresis or PCR.
NON-SPECIFIC Attacks and degrades all forms of DNA and RNA e.g. single-stranded, double-stranded, linear, or circularized.		IRREVERSIBLE DEACTIVATION Shortened protein purification process due to eliminating the need for additional steps. This streamlines workflows, improving efficiency and yield.	

Comparison of enzymes			
MERCK	NuClean	QIAGEN	
Benzonase	CLEANase	Saltonase	
Enzyme type	Nonspecific	Nonspecific	
Substrates	DNA & RNA	DNA & RNA	
Optimal pH	8.0-9.2	7.0-8.0	
Optimal temperature	37°C	20°C	
Irreversible deactivation	X	✓	

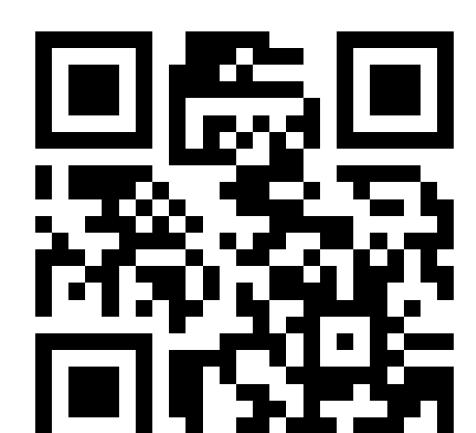
Readiness Levels

Opportunities to advance CLEAnase

Academic cooperation: Partners for research on low-temperature nuclease development
Partnership: Industry pilots to validate CLEAnase in biologics purification
Funding: \$500 000 seed funding for stabilization and scale-up
Commercialization: CLEAnase offers strong entry potential for bioprocessing firms with multiple commercialization paths

Core Team: Highly skilled team with deep expertise in enzyme engineering and bioprocessing
IP Status: Confirmed IPR protection options and identified what to protect based on business relevance
Funding: Supported by a university grant and strong institutional backing from the university

TOP 1000 INNOVATORS of POLAND in SILICON VALLEY December 2025


Poster funded by the Ministry of Science and Higher Education (MNiSW) as part of the "ScalePL" program.

Minister of Science and Higher Education
Republic of Poland

Ministry of Science and Higher Education
Republic of Poland

